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ABSTRACT: In a simple problem with shocks and rarefactions for the equation

U + ( u 2 + u)x = 0ut 2

six alternative calculation procedures have been tested as to cost and

accuracy. Best results were given by the least elaborate method with the

finest mesh and by the nost elaborate method with the coarsest mesh.
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This report is a study of the relative accuracy of six alternative methods

of calculating a solution involving shocks and a rarefaction wave for the

equation

ut+ (u 2 +u) = 0
x

The equation is equivalent to that proposed by Burgers as a simplified model

for shock problems in fluid dynamics. The results are believed to be

suggestive as to calculations in such problems.

This work was carried out under NOL Task No. FR-30.

ROBERT ODENING
Captain, USN
Commander

RICHARD C. ROBERTS
By direction
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A COMPARISON OF NUMERICAL SCHEMES 70 CALCULATE THE SOLUTIONS
OF A NON-LINEAR PARTIAL DIFFERENTIAL EQUATION WITH SHOCKS

INTROIUCTION

A simple problem with shocks and rarefactions for the equation

() u+ (u2 +u) 0

has been subjected to calculation by various procedures and all the results

compared with the exact solution. The methods thus tested are

(1) Lax's original centered difference method [1],

(2) a left difference method without viscosity [2],

(3) the viscosity method of Lax and Wendroff [3]
(3.0) without added artificial viscosity,

(3.1) with added artificial viscosity,

(4) a modification of the Lax-Wendroff method for which convergence

has been proved [4]

(4.0) without added artificial viscosity,

(4.1) with added artificial viscosity.

The programming of these schemes for an 13 704 machine was performed mainly

by W. Parr, with the assistance of Mrs. S. Madigosky, for whose patience and

intelligent care I wish to express my gratitude and thanks.

Only calculations of roughly the same cost are compared. A multiplica-

tion or division costing about the same as ten additions, the measure of

relative cost has been taken as

C = OI + a
I0,000 hk'
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where h and k are the horisontal and the vertical distances, respectively,

between consecutive grid points (thus, 1/hk measures the total number of

calculations performed in unit area of the xpt-plane), p denotes the number

of multiplications and divisions performed at a typical grid point, and a

the number of other operations at that point.

The problem treated is that of finding a generalised solution I/ of (1)

with initial data proscribed as

(0 for x < 0

2 for 0 < x < 0.3
u(xO) 1 for 0.3 < x < 0.9

0 for x > .9

This problem is easily solved explicitly with a rarefaction wave centered

at (0,0) and shocks issuing from (.3,0) and (.9,0), each shock being a

line of slope

dx U + u

31 2

where u+ and u are the limiting values of the solution at the right and

at the left of the shock, respectively. In the interval 0 < t < 0.6, in

particular, the solution of the problem is given by

0 for x < t

S-1 for t < x < 3t
U(xpt) = 2 for 3t < x < .3 +5 t

1 for.3+it<x< 9+3t
2 20 o x > .9 + it•0 forx>9t~

(See Figure 1.) This solution is known to be unique.-/

2
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Note that, in this problem, 0 < u < M, where

M = 2

The same bounds, by a priori reasoning, applies to the calculated values of

u in the first, second, and fourth schemes, and for present purposes will be

assumed in the third. Note also that all schemes considered, ek6ept the

third, have been proved to render approximations to the solution which are

as close as desired, provided h and k are sufficiently small and the ratio

.= k/h appropriately bounded.

THE CALCULATION SCHEMES TESTED

The notation in the following is that of [4]: vii denotes the value of

u , as calculated according to the scheme in question, at the grid point

x = ih, t = jk; wij = (v i+l-j - i)/h and Wij = hwij = vi+l,j - vii ;Fii i~lij Fii F'(ii) i ~ 3 i

F(u) = u2/2 + u ; = F(v), F = F.(v Also, as above, Q= k/h

1. Lax's original centered difference method. Lax's original scheme

was based on the difference equations

vi,1+ 2 = (vi+1 ,j +vili) - 2(Fi+lj - i-lvj

According to N. D. Vvedenskaya [6] (Theorem 1), the scheme converges when

Q maxIF'(v)I _ 1 , or, in our case, when ._< 1/(l + M) = 1/3 .

2. A left difference method without viscosity. In this scheme,

v = vij - (FIj - ri-l9j)
viiJ+l

'4|
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The asymmetry of the scheme is permitted because of the non-negativity of F'.

According to a remark at the end of the appendix below, convergence occurs

when 9 < 1/4 .

3. The viscosity method of Lax and Wendroff. In this method,

2 J- 2 1 +,2 ) v~ pj v
v = vij - (Fi+l j-Fil,j) + ý[(Fij + F -vij)-

S2 + F 2) _] + _ )1- 42-, 1 (ij V-lJ 1(Q-191 QJ

where Q = -BIFij - F'+I I (vi+lJ - vi) B being

a non-negative constant.here taken as zero in method 3.0 and as 1/4 in

method 3.1. Lax and Wendroff (3, P. 227] expect the scheme should be stable,

in the case B = 1/4 , when -Q maxiFij1  < .78 , thus when O < .78/(1+M)1'

.26. Stability in the case B = 0 by their formula demands merely -9 < 1/3

(The B in this paper is one fourth the quantity Lax and Wendroff call B.)

4. A modified Lax-Wendroff scheme. The calculation scheme here con-

sidered is

viJ~~~l iJ@FjF-~) 2 ,2, 2))
= 'jlv i- ýQFi- •~) [Fij (V i+l,j-v ij )-Fi'_lti(v ij-Vi-l,j ]+G(Qi-l,j-Qij ,

the constant B entering Q being taken as zero in Method (4.0) and as

1/4 in Method (4.1). For B > 0, it is proved in [41 that this method

converges if 0 is sufficiently small, but larger possible choices for Q

than emerge from that discussion are determined in the appendix below; these

are
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0 = .16 for B = 0 (Method (4.0))

= .156 for B = 1/4 (Method (4.1)).

Two cost levels (C = 8 and C = 32) were arbitrarily fixed for all

the above schemes and values of 4 selected near their permitted maxima.

Then mesh widths h and k were obtained to accord in each case. vith the

predetermined C and 4 . The values of the parameters thus entering are

displayed in Table 1.

6
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CONOLUSION8

The results of the calculations by each method except 4.1 were tabulated

after some thinning for the rectangle

0 < x < 1.8
R: 0 < t < .6

the case C = 32 being presented here in Tables 4 - 8. The mean absolute

error and root mean square error over all mesh points in R and, separately,

in its top boundary line L are given for all calculations in Table 2. These

results suggest the following observations, at least with respect to the

example studied:

1. The use of artificial quadratic viscosity (*O) in Method 3.1 did

not clearly reduce the average error and in Method 4.1 greatly increased it.

Other values of B and lower mesh width ratios might, however, have led to

better results.

2. Lax-Wendroff viscosity worked well in the method of centered differ-

ences (3.0) for which it had been proposed, but disappointingly in the left-

difference scheme (4.0). Perhaps the latter method would have performed

better, however, at a higher cost level at which the x-axis would be more

finely subdivided.

3. Quadrupling the cost less than halved the average error.

4. Methods 2, 3.0, and 3.1 worked best: at identical costs, closely

comparable mean errors resulted from the simple scheme and refined mesh of

Method 2 and the refined schemes and coarser mesh of Methods 3.0 and 3.1.

Additional conclusions arise from comparing the three most successful

methods on a region of relatively great transitions.

8
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AVERAGE ERRORS

C =8.00 C =32.00
Method

ER EL SR SL ER EL SR SL

1 .20 .18 .31 .28 .12 .11 .20 .18

2 .14 .12 .23 .20 .08 .08 .15 .16

3.0 .16 .1I .29 .22 .08 .07 .18 .23

3.1 .18 .a1 .29 .18 .09 .08 .18 .19

4.0 .24 .21 .34 .32 .16 .15 .25 .25

4.1* .34 .34 .55 .63

R denotes the rectangle 0 < x < 1.8, 0 < t < .6.

L denotes the line segment 0 < x 1( 1.8, t = [.6]k, where

[a]k is the largest exact multiple of k that does not

exceed s .

ER = average absolute deviation of calculated from exact values

of the solution at the lattice points in R .

EL = average absolute deviation of calculated from exact values

of solution at the lattice points on L .

SR = root mean square deviation at the lattice points in R .

SL = root mean square deviation at the lattice points on L .

C = index of total cost .

*Better results were obtained by Method 4.1 with B = I and a value

of Q much < Q ; they still compared poorly with the others.per

Table 2

9
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For C = 32 , in'Tables 9, 10, and 11 we present with no thinning in the

x-direction such a comparison over the trapezoid

-. 05 + 3t < x < .95 + 3t/2
T:

.3 < t < .6,

this area covering much of the vicinity of the two shocks and a small part

of the rarefaction wave. The mean absolute error and the root mean square

error over all the mesh points of T appear in Table 3. From these compila-

tions it &eema reasonablo to add the following conclusions:

5. By all three methods (2,3.0 and 3.1), calculated values tend to be

too low to the left and too high to the right of a shock. These methods thus

dull the apparent sharpness of a shock, but Method 2 perhaps to the greatest

extent.

6. Method 3.0 seems most prone to occasional -ild errors (occurring in

this example to the right of the first shock); these errors, however, are

rapidly corrected.

7. The average absolute error over T is about the same for the three

methods; the mean square error, however, is appreciably less under Methods 2

and 3.1 than under Method 3.0.

Further study of our six methods might consider the effects, at constant

cost, of varying the mesh width ratios below their maximum permissible values

and also of varying the coefficient of artificial viscosity B

10
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AVERAGE CALCULATION ERROR

IN

REGION OF RAPID TRANSITIONS

C =32
Method

ET ST

2 .25 .29

3.0 .23 .36

3.1 .23 .29

T denotes the trapezoid -. 05 + 3t < x < .95 + 3t/2

.3 < t < .6

ET = average absolute deviation of calculated from exact values

of the solution at the lattice points in T .

ST root mean square deviation at the lattice points in T

C index of total cost

Table 3

A
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TABLE 9 LEFT DIFFERENCE
EXACT MINUS CA

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
88
86

84
82

8o
78

76

74

72

70

68
66
64 .215
62 .203 . 29...2 .

60 .216 .2.0'.248 .280
58 .206 . IZ•'.-. .239 .288 .L2

56 .220ah .232 .233 .300 . -*.320-

54 .212 .231,,,A5 .218 .229 .319 -. 274 -. 119 -

52 .226 .2J .226 .-204 .230 .346 - -. 230 -. 095 -. 033-.

50 .220 .- 12< .208 .193 .236 .380 . 3 -. 190 -. 074 -. 025 -. 006
48 .235 .9W .228 .190 .184 .249 . .340 -. 153 -. 057 -. 018 -. 004 .004
46 229 .253 - .206 .173 .179 .270 .Ar -. 288 -. 121 -. 043 -. 013 -. 003 .003 .014

* The dashed line is the right hand boundary of the rarefaction wave: the solid lines

intersecting it are the two shocksi. The coordinates

x = .02739 (I - 1), t = .066845 (J - 1)

to which any particular entry corresponds are ascribed to the decimal point for that

.17

17



IOD WITHOUT VISCOSITY: METHOD 2, Co 32.
TED VALUES IN REGION OF RAPID TRANSITION'

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
. .563 -.533 -. 206
.358 .58 0 -.587-.248

.387 . 50- . 0 -.295

.282 .2.--063 -.348 /-.137

.307 A% -. 071 . -. 405-.172

.241 .335 -%8Z7 -. 074 .21. .466 -. 213

.2~,681ý 6 . 6 -. 073 .178 29 -. 261

.218 .3ý....391 .5 .270-.069 .144 . -.316-.130

.234 ,,6 .406 . -.242 -.063 .115 .3 -.376 -.165

.207 .253.,1< .425 -. 213o-056 .091 .293 .440 -. 207

.220ý74-30 .448 7 -.185 -.049 .071 ._242 - 6 -.255

3_.,.-82 .3 30 -.158 -.041 
.197

'78 .352 -.291 -.132 -.034 .043 .159 .3 -.371 -.163

71 -. 52 -.109 -.028 .033 .126 .305 .436 -.204

0-.215 -.088 -.022 .025 .099 .251 - 4 -.253

80 -.071 -.017 .019 .077 .203 . -.309 -.126

'56 -.013 .014 .059 .163 .36 .370 -.161

10 .011 .045 .128 .304 .435 -.202

08 .034 .100 .250 - 3-.251

'25 .077 .201 . -. 306 -. 123
159 .160 .36 .368 -.158

25.0731.9
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APPENDIX

Our aim here is to find as large values of Q as possible for which

methods 4.0 and 4.1 will converge. Two procedures will be compared, the

first that described in [4] and the second a modification of it. The second

procedure turns out to be the better and leads to the values apctu "ly used

above.

Calculation scheme 4 is that of [4] with

f = F, g-0, a= O, qj t-(l +.iV) 2 vij÷QiJ

see pp. 5 and 21 and equation (4.4b)3/ In inequality (4.7), in particular,

therefore, as we see at once,

b +2V2 )21 + 1ij 2 i-l2'ij + BiWiI, ,j I=cii + vi)+ BIWiI ,

dij = eij = 0

To obtain inequality (4.8), it is well to note that

Q = - BIWij-4W1J = f(Wi 1) ' where f(W) =- BIWIW ,

and to use the method described for case (4.5c). In the result, we evidently

will have

Euj = {(1 + vii) 2 + 2B I Wl C, = •(1 + vi+l,) 2 + 2BIWj p, H = max Hij

Hij = 1 + (vii +Vi+,)/2 , Di = Eu = E 1 = Enj = 0,

where Wij and Wij are numbers between Uij and Wi.l.,i, and between Wij and

Wi+l,j, respectively.

21
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Both ways of bounding 40 begin with the argument for Theorem 5.1. In

this argument, Q is restricted by the single requirement that the co-

efficient of vij in the right member of (5.2) be non-negative, and, there-

fore, that

1-Q(F'* + b* + ca = ks*) > 0

the star in each case indicating a maximum value of the quantity concerned

for the various possible values of its indices or arguments. Since

F? =1+M, b* = c* = 2(l + M)2+ MB , s* 0, we have the condition
2

(222
(2) (1l+M)202 + (1 + M + 2B).0--Il<.

M being equal to 2, for B = 0 we thus have

(3)o _< (51/2-1)/6 = .2o60

and for B= 1/4

(3)1 Q < 13i = .178.
1 9

In the first of the two ways of bounding, .9 now is subjected to an

additional restriction arising from the argument for Theorem 5.2. According

to this argument, the coefficients

S= 1 - Q[l+vij+ (l+vi,j)2 + 2(1+v )2+ 22BIWljl + 2BIWOjI ]Pi2j1 ~lji

and
a=1•(i - 219(I+M) )

in (5.8) (b=0 in this equation) must be made to satisfy the conditions

22
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(p.14) Pij > 2/3 and a > 0 ; hence, we require

(1 + M)2.2 + (1 + M + 4BM)Q- 1/3 < 0 and . < 1/2(1+M)

The first of these inequalities would imply the second. Since M = 2, the

first inequality is equivalent to

(4)0 . < (7/3)1/2- 1 .087+ for B = 0
0 6

and to

(4)I - 8 5= .06 for B = 1/4

It expresses the first of the two alternative bounds we have considered upon

@.

The second method of bounding 4; comes from a second method of proof

of Theorem 5.2 in which an argument of Vvedenskaya has been applied. We

begin with inequality (5.7) which, in the present case, reads

wi,j 4  1 -(Fj + Bij + Ci )]wij + Q(Flj + Bij)wi_l,j + GCijWi+l,j

k- vi+ iJ)2 w • .w

k .[T~j - 20(1 + i i+l ]w k2 - 2
2 ij i i-ltj

single or double bars connoting intermediate values of the arguments as

occurring in Taylor's theorem with remainder. The bracketed part of the co-

efficient. of wij is required to be positive, as previously, but the

coefficient of wij , unlike before, is to be merely non-negative. Hence,

.0 now is to be such that min F" - 29(1+M) > 0 and 1 - Q(F'*+B*+C*) _> 0

the star again signifying maxima of the quantities in question.

23
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Since F" = 1, the first of these conditions is

(5)0 1 < 1/2(1÷M) = =.16e+ .

The second, which we write as

2 2
(1+M) 42 + (1 M + 4MB)Q - 1 < 0 ,

reduces to (3)0 for B = 0 and to the condition

- . .156 foi B= 1/4

No stronger condition, as we shall now see, arises out of the further

argument. Let

wij = max (wj.,,jt Hjp 0), = Nmx (0, max wij)
i

From the above inequality, we have

c -2

(6) wJ+I < (1 - 4iJ)wij + gOijNj -- kwij

where c = &in F" - 20Q(1+M) = 1 - 20(1+M). (In this type of argument we

follow Vvendenskaya.) Since .9 is supposed to satisfy the conditions of

the previous paragraph, c > 0

Next, like Vvedenskaya [6], consider the quadratic expression

H(y) S H i(Y) -- (1 - Qrl )y - c2ky

H will be monotonically increasing, i.e., H'(y) = 1 - ij - key > 0 ,

if y < (I - QCij)/kc . Hence, in particular

2A
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*C'H) ) < (N1) ,

if, for all i , Nj _ (U- QCij)Ac . In (5.10) we have proved, however,
that Nj < sup wio < r/h , a being a bound for rio . (In the present case,

i

vjj = Wij as used on p. 14, and b = 0.) Hence, Na satisfies the desired

condition (7), if 0 is so fixed that, for all i , i/h < (l"-Cij)/kc

Substituting in this for c and also replacing Cij by its upper bound

- (l + M)2 + 2MB , we arrive at the condition

(l+M)(2m _(,+M)).02  m +2MB).0+ 1

which, for m= M= 2 becomes

15 Q2 _ (2 + 4B)o + 1 > 0

For B = 0 or B = 1/4, the quadratic expression on the left is definite:

the inequality is satisfied for every value of 0 and does not really con-

stitute a restriction.

We are enabled by (7) to replace 'w' in the right member of (6) byia
N and, thus, to obtain

a2
wi,J+l -a kN2

and, therefore,

(8) Nj+l - Nj - ckM12

From this, it is easy to produce an upper bound for Na completing this

alternative proof of Theorem 5.2. We shall show,to be specific, that
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(9) N. < 2/cjk.

Set z(t) = 2/ct z j = z(jk) . Since dz/dt =-cz2/2 integrating

we obviously have

(j+l)k

S - c z(t)2 dt >- 2kz 2
Jj+I 2 j

jk

or

(10) HJ+1 > H(z)

where

H(y) y - cky2 /2

From this we shall prove by induction that

(11) zj > Nj , j = 1,2, ... ;

these inequalities are equivalent to (9). The first step is to note that

zI Z N1 , z2 Ž N2 , consequences of the fact discussed in a previous

paragraph that l/ck > m/h > N1,tN2 . Next observe that H(y) monotonically

increases for y _ l/ck and, furthermore, that z _ < l/ck for j 2 2 .

Therefore, if zj _ Nj for some index j > 2 , for that index H(zj)_H(N,)

From this, (10), and (8), if for a particular index j > 2 we know zj 2 Nj ,

we can conclude that

zj+l > H(zj) > H(Nj) > Nj+1

The induction for (11) is thus complete.
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We note in summary that our first method bounds .0 according to (3)

and (4), our second method according to (3) and (5). The second results are

obviously better; they permit use of the values

(12) 0 = .166 for B= 0

= .156 for B = 1/4

in the calculations.

Remark: The left difference scheme without viscosity of section 2 is

of type (4-4b) with

fij = Fij ' ij qij = s 0ij = 0

Reasoning like that above concerning Theorem 5.1 shows that, in this situa-

tion, M = m if 0 max F' < 1 , i.e., if 0 < l/(1+M) = 1/3 . The further

restriction

(13) 0 < 1/2K =1A/

is easily seen to be required to bound wij (by the second method) according

to Theorem 5.2. To show this, we start from (5.6) which, here, leads to the

inequality

wi4j1 .< (1 - QF' J)wij +.F @FjWi ~ w 2~'ji + fnjwi ~2)

-v~ iJ i ii i-l 0 2 ijij ±3 J

and thus, in previous notation, to

k-w 2

wip3+l - wij 2 ii

since F" = 1 and since the coefficients on the right are all positive
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because of the first restriction upon 0 . The previous argument leading to

the desired upper bound for wij will apply completely# provided we now

require 2m/h < A/k , a restriction which is the equivalent of (13).

28



NOLTR 63-8

FOOTNOTES

I/ By generalized solution we mean essentially a piecewise
continuous solution satisfying the pertinent shock condition
along discontinuities. More refined concepts of generalized
solution are to be found in [2] and the accompanying references.

For uniqueness theorem, cf [51.

3/ This and other numbered equations, theorems, etc., not belong-
ing to the present paper are to be found in [4]1.

29



NOLTR 63-8

REFERENCES

1. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their
numerical computation, Cor. Pure Appl. Math., 7(1954),159-193

2. A. Douglis, On discontinuous solutions of quasi-linear, first order
partial differential equations, NAVORD Report 6775, U. S. Naval
Ordnance Lab., White Oak, Md., 1960, pp. 1-75

3. P. D. Lax and B. Wendroff, Systems of Conservation Laws, Comm. Pure
Appl. Math., 13(1960), 217-238

4. A. Douglis, On calculating solutions of quasi-linear, first order
partial differential equations, NAVWEPS Report 7254, U. S. Naval
Ordnance Lab., White Oak, Md., 1960, pp. 1-23

5. 0. A. Oleinik, On discontinuous solutions of nonlinear differential
equations, Dokl. Akad. Nauk SSSR 109(1956), 1098-1101

6. N. D. Vvedenskaya, The difference method solution of Cauchy's problem
for a non-linear equation with discontinuous initial values, Dokl.
Akad. Nauk SSSR 111(1956), 517-521

30



NOLTR 63-8

STRNMAL DISTr• IT•N LIST (MI)

Copies Copies

Chief, Defense Atomic Support Agency Director of Intelligence
Washington 25, D. C. Headquarters, USAF

Attns Documnt Library Branch 2 Washington 25, D. C.
Attu: AOIN-3B

Commanding General
Aberdeen Proving Ground, Md. Langley Research Center

Attns Teoh. Information Branch 2 Hampton, Virginia
Attns Director, Ballistic 2 Attn: Theoretical Aero- 1

Research Laboratories dynamics Division
Attns Librarian 2

National Aeronautics and Space Agency Attn: Adolf Busemann 1
Ceo. C. Marshall Space Flight Center Attn: John Stack 2
Huntsville, Alabama

Attn: H-SandS-PT 3 National Aeronautics and Space Agency

(Nr. 2. A. Connell) 1512 H8treetrIL W,
Washington 25, D. C.

ASTIA 10 Attn: B. A. Nulcaby, Chief
Arlington Hall Div. of Research
Arlington, Va. Information

Chief, Bureau of Naval Weapons Ams Research Center
pepartment of the Navy Moffett Field, California
Washington 25, D. C. Attn: Librarian

Attn: DLI-3 4
Attn: RB-1 1 NASA Flight Research Center
Attn: RM4s 1 Edvards, California
Attn: RRRE 1 Attn: Mr. W. C. Williams
Attn: RRMA 1
Attn: RNGA 1 Levis Research Center

21000 Brookpark Road
Comanding Officer and Director Cleveland, 11, Ohio
David Taylor Model Basin Atta: Librarian
Aerodynamicd Laboratory Attn: Chief, Supersonic
Washington 7, D. C. Propulsion Div.

Attn: Library
Comander,

Coinwading Officer and Director Pacific Missile Range
David Taylor Model Basin Point Magu, California
Applied Mathematics Laboratory Atta: Technical Library 2
Washington 7, D. C.

Attn: Dr. H. Polachek National Bureau of Standards
Attn: Dr. D. Shanks Washington 25, D. C.

Attni Applied math. Div.
Camanding Officer
Diamond Ordnance Fuse Laboratory Commanding Officer and Director
Washington 25, D. C.

Attn: Library, Bldg. 92, Ru.211 David Taylor Model Basin
Applied mathematics Laboratory

Los klamo. Scientific Laboratory Washington 7, D4 C.
University of California Attn: Dr. Betty Cuthill
P. o. Box 1663 Attn: Dr. Charles W. Dawson
Los Alomos, Neo Mexico

Attn: Dr. Burton Wendroff



NOLTR 63-8

EXTERNAL DISTRIBUTION LIST (M1)

Copies Copies

Commander The Avco Manufacturing Corp.,
U. S. Naval Ordnance Test Station Research Laboratories
China Lake, California 2385 Revere Beach Pkwy

Attn: Technical Library Everett 49, Massachusetts
Attn: Code 406
Attn: Code 507 CONVAIR Corporation
Attn: Code 5019 A Division of General Dynamics

Corp.,
Commander Daingerfield, Texas.
U. S. Naval Weapons Laboratory /
Dahlgren, Virginia Cornell Aeronautical Lab-In*.,

Attnt Toehioal Library 2 P. 0. Box 235, 4455 Genassee St.,
Buffalo 21, New York

Commanding Officer Attn: Librarian
ONR Branch Office
Box 39, Navy 100 Douglas Aircraft Company
Fleet Post Office Santa Monica Division
New York, New York 3000 Ocean Park Blvd.,

Santa Monica, California
Office of Naval Research Attn: Chief Engineer
T-3 Building, Room 2715
Washington 25, D. C. Navy Ordnance Division

Attn: Head, Mechanics Branch Eastman Kodak Company
Attn: Dr. J. Weyl 50 West Main Street

Rochester 14, New York
Naval Research Laboratory Attn: Mr. W. B. Forman 2
Washington 25, D. C.

Attn: Dr. H. M. Trent, Code 6230 Missile and Ordnance Systems
Attn: Code 2027 Dept.,

General Electric Co.,
Commander 3198 Chestnut Street
Aeronautical Systems Division Philadelphia 4, Pennsylvania
Air Force Systems Command Attn: L. Chasen, Mgr.Library 2
Wright-Patterson AF Base, Ohio

Attn: WCOSI-3 2 Mathematics Research Center
U. S. Army

Oak Ridge National Laboratory University of Wisconsin
Oak Ridge, Tennessee Madison, Wisconsin

Attn: Dr. A. S. Householder Attn: Prof. R.E.Langer
Attn. Dr. Donald Greenspan

AER, Inc.,
871 E. Washington Street Courant Institute of Mathematical
Pasadena, California Sciences

Attn: Dr. A.J.A. Morgan New York.University
New York 3, New York

Allied Research Associates, Inc., Attn. Prof. Peter D. Lax
43 Leon Street Attn: Prof. Eugene Isaacson
Boston 15, Massachusetts Attn: Prof. R. D. Richtqer

Attn: Miss Joyce Larkin



NOLTR 63-8

ECTIAL DISTRIBUTfION LIST (Ml)

No. of No. of
copies Copies

Guggenheim Aeronautical laboratory Case Institute of Technology
California Institute of Cleveland 6, chio
Technology 1 Attn: G. Kuerti
Pasadena 4, California

Attn: Aeronautics Library Cornell University
Graduate School of Aero. Ing.

Hughes Aircraft Co. Ithaca, hew York
Florence Avenue at Teals Street 1 Attn: Prof. W. R. Sears
Culver City, California

Attn: Mr. Dana R. Johnson Applied Physics Laboratory
R & D Tech Library JohnsHopkins University

8621 Georgia Avenue
McDonnell Aircraft Corp. Silver Spring, Maryland
P. o. Box 516 2 Attnt T echnical Reports Group
St. Louis 3, Missouri

I Attn: Engineering Library, The JohmHopkins University
Dept. 644 Charles and 34th Streets

Baltimore 18, Maryland
United Aircraft Corporation 1 Attn: Dr. Francis H. Clauser
400 Main Street
Zast Hartford 8, Connecticut M•thematics Departuent

1 Attn: Chief Librarian Harvard University
Cambridge 39, Massachusetts

Superintendent 1 Attn: Prof. G. Birkhoff
U. S. Naval Postgraduate School
Monterey, California 2 Director

1 Attn: Library, Technical Institute for Fluid Dynamics and
Reports Section Applied Mathematics

University of Maryland
University of California College Park, Maryland
Berkeley 4, California

1 Attn: Dr. S. A. Schaaf hisssachusetts Institute of Tech.
Cambride 39, Massachusetts

University of California 1 Attn: Prof. Joseph Kaye,
Los Angeles 24, California Room 1-212

1 Attn: Dr. 0. 2. Forsythe
University of Michigan

California Institute of Technology Bnda1!X laboratory
Pasadena 4, California Ann Arbor, Michigan

I Attn: Aerqnautics Department 1 Attn: Prof. Otto Laporte

Jet Propulsion laboratory 1 Supervisor
California Institute of Technology Technical Documents Services
Pasadena 4, California Willov Run laboratories

1 Attn: Library University of Michigan
Willow Ron Airport
Ypsilanti, 'ichigan

3



NOLTR 63-8

EXTERNAL DISTRIBUTION LIST (M1)

No. of
Copie s

University )f Minnesota
Minneapolis 14, Minnesota

1 Attn: Mechanical Eng. Dept.

The Ohio State University
Research Foundation
Columbus 10, Ohio

1 Attn: Security Officer,
Carlos Brewer

1 Attn: Dr. Paul M. Pepper

1 Applied Math. & Statistics Lab.
Stanford University
Stanford, California

Defense Research Laboratory
The University of Texas
P. 0. Box 8092
Austin 12, Texas

1 Attn: H. D. Krick, Asst. Director

Department of Civil Engineering
Colorado State University
Fort Collins, Colorado

1 Attn: Professor J. E. Cermak

Applied Physics Laboratory

Johns Hopkins University
8621 Georgia Avenue

1 Silver Spring, Maryland
Attn: Dr. N. H. Choksy

General Electric Company
Missile and Space Division
3198 Chestnut Street
Philadelphia, Pa.

1 Attn: Mr. Jeroae Persh

University of Michigan
Sertals and Documents Section

1 Ann Arbor, Michigan

4



lor 0

z z w HN.4 R E

A4 I I~ 11I
z 0 i

0 00 c r

o u 0 u OR 0

.J m~ UJ

0 ro 0 j~ 0.
LL Vw

0 W. U
o U

0

Z ~ \0 M0 wn2~
m 0

HU

020r

02

cc 0 C

x U cc 0 )2.

co



11~~~ ~~ -lD D PI

~04 4 '?40 
I. r8. 148P.~4 0 43.

p Ns'.~4) 60 $40

00
.00 U

0 10

V.4 0'$ 4A b 40

-4o r-6 1- 14 0, 4.0 0~4a
00 r4. 0

d05 H45. 0 * Zd H
'D 1;140.4' O 4

go~. r_. I
H0 0 I 5 10 .cS0 00 .,Ii

4-1 P 410
so .44)8'O . 0 9MI "s.

.3 E- r-f 4ý 43 0 9 5 r_ 4 4-
.4 d H0140 rF4 ~ ) 14) d

I.... - -p 43 a p
o

.4 '14 r 4 )w -'34

$445

n ID a0to, 1
'a UH40.1 ) 5 004

4A 10 OW ma .a -
d- 14 1

_ 0A 00
'0 ,-40 PC m 43 4

4-j~ 411~ ..

o F- 8 4 + Fi- PC '.0
t- I 0040

i V-MA.N w048 V$4 .000-fv
*6 09. 0 9% ý I

4)0 NK O 9 9o gM 0 d 9 0 %

HO 'I _~ Wq 4wI0Jg I0 A41


